Volume 38 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
Yang Jun, Yang Min, Chen Haibing. Applicability Analysis of Design Method for Settlement Reducing Pile Considering Pile-Soil Interaction[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(6): 680-691. doi: 10.3969/j.issn.1007-2993.2024.06.007
Citation: Yang Jun, Yang Min, Chen Haibing. Applicability Analysis of Design Method for Settlement Reducing Pile Considering Pile-Soil Interaction[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2024, 38(6): 680-691. doi: 10.3969/j.issn.1007-2993.2024.06.007

Applicability Analysis of Design Method for Settlement Reducing Pile Considering Pile-Soil Interaction

doi: 10.3969/j.issn.1007-2993.2024.06.007
  • Received Date: 2023-09-17
  • Accepted Date: 2024-03-11
  • Rev Recd Date: 2023-12-05
  • Publish Date: 2024-12-06
  • Regarding the applicability of settlement-reducing piles in complex stratum conditions, the influence of factors such as the site condition and building type, maximum settlement control standard, and pile and soil stiffness distribution on the design of settlement-reducing piles based on a large number of practical engineering projects were discussed. The application criteria and design methods of settlement reducing pile as the optimization objective were proposed, and the rationality was verified by engineering cases. The results show that the settlement-reducing pile has good adaptability to various sites and building types. The important grade of the foundation, the bearing capacity of the foundation, and the stiffness distribution of the pile and soil are the key factors to determine its application. To save the amount of piles and ensure the overall safety of the foundation, it was recommended that the bearing capacity of the foundation in soft and hard soils should not be less than 0.5 and 0.65, respectively. Considering the contribution of raft-bearing capacity, the dimensionless influence coefficient of Gibson soil and layered soil was recommended not to be less than 2.3 and 1.5, respectively. Meeting the above requirements can be used as the premise to determine the applicability of the settlement-reducing pile.

     

  • loading
  • [1]
    ZEEVAERT L. Compensated friction-pile foundation to reduce the settlement of buildings on the highly compressible volcanic clay of Mexico City[C]// Proceedings 4th ICSMFE, London, 1957, 2: 81-86.
    [2]
    BURLAND J B, BROMS B B, DE MELLO V H B. Behaviour of foundation and structure[C]// Proceedings 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 1977, 2: 495-546.
    [3]
    COOKE R W. Piled raft foundations on stiff clays - a contribution to design philosophy[J]. Geotechnique,1986,36(2):169-203. doi: 10.1680/geot.1986.36.2.169
    [4]
    FRANKE E, EI-MOSSALLAMY Y, WITTMANN P. Calculation methods for raft foundations in Germany[J]. Design applications of raft foundations, 2000: 283-322.
    [5]
    POULOS H G. Piled raft foundations: design and applications[J]. Geotechnique,2001,51(2):95-113. doi: 10.1680/geot.2001.51.2.95
    [6]
    RANDOLPH M F. Science and empiricism in pile foundation design[J]. Geotechnique,2003,53(10):847-876. doi: 10.1680/geot.2003.53.10.847
    [7]
    黄绍铭, 王迪民, 裴 捷, 等. 按沉降量控制的复合桩基设计方法(上)[J]. 工业建筑,1992,22(7):34-36. doi: 10.3321/j.issn:1000-8993.1992.07.009
    [8]
    黄绍铭, 王迪民, 裴 捷, 等. 按沉降量控制的复合桩基设计方法(下)[J]. 工业建筑,1992,22(8):41-44. doi: 10.3321/j.issn:1000-8993.1992.08.010
    [9]
    宰金珉. 复合桩基设计的新方法[C]//第七届土力学及基础工程学术会议论文集, 西安:1994: 611-615.
    [10]
    杨 敏, 艾智勇. 以沉降控制为基础的桩基础设计理论与工程实践[C]//中国土木工程学会第八届年会论文集, 北京:1998, 3: 432-436.
    [11]
    杨 敏. 基于变形控制设计原则的减少沉降桩基础研究(英文)[J]. 岩土工程学报,2000,22(4):481-486. doi: 10.3321/j.issn:1000-4548.2000.04.019
    [12]
    赵锡宏, 董建国. 桩基减少桩数与沉降问题的研究[J]. 土木工程学报,2000,33(3):71-74. doi: 10.3321/j.issn:1000-131X.2000.03.013
    [13]
    刘金砺, 迟铃泉. 桩土变形计算模型和变刚度调平设计[J]. 岩土工程学报,2000,22(2):151-157. doi: 10.3321/j.issn:1000-4548.2000.02.002
    [14]
    管自立. 疏桩基础理论与实践[M]. 北京: 中国建筑工业出版社, 2015.
    [15]
    HANSBO S, JENDEBY L. A case study of two alternative foundation principles: conventional friction piling and creep piling[J]. Vag-och Vattenbyggaren,1983,7(8):29-31.
    [16]
    LONG P D, VIETNAM W S P. Piled raft—a cost-effective foundation method for high-rises[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2010, 41(3): 1-12.
    [17]
    管自立. 疏桩基础设计实例分析与探讨(一)[J]. 建筑结构,1993,10(6):26-31.
    [18]
    管自立. 疏柱基础设计实例分析与探讨(续)[J]. 建筑结构,1993,23(11):42-46.
    [19]
    宰金珉. 桩土明确分担荷载的复合桩基及其设计方法[J]. 建筑结构学报,1995,16(4):66-74. doi: 10.3321/j.issn:1000-6869.1995.04.001
    [20]
    刘惠珊. 高层建筑补偿式基础的改进一半补偿的疏桩基础[C] //中国土木工程学会第八届土力学及岩土工程学术会议论文集, 南京:1999: 334-337.
    [21]
    KAKURAI M, YAMASHITA K, TOMONO M. Settlement behavior of piled raft foundation on soft ground[C]//Proceedings 8th Asian Regional Conference Soil Mechanics Foundation Engineering, Kyoto, 1987, 1: 373-376.
    [22]
    SOMMER H, TAMARO G, DEBENEDITTIS C. Messe Turm, foundations for the tallest building in Europe[C]// Proceedings 4th. International Deep Foundation Institute Conference , Stresa, 1991: 139-145.
    [23]
    JGJ 94—2008 建筑桩基技术规范 [S]. 北京: 中国建筑工业出版社, 2008.
    [24]
    RANDOLPH M F. Design methods for pile groups and piled rafts[C]//Proceedings 13th ICSMFE, 1994, 5: 61-82.
    [25]
    KATZENBACH R, ARSLAN U, MOORMANN CHR. Piled raft foundation projects in Germany[J]. Design applications of raft foundations, 2000: 323-392.
    [26]
    TAN Y C, CHOW C M, GUE S S. Piled raft with different pile length for medium-rise buildings on very soft clay[C]//Proceedings 16th Internationl Conference Soil Mechanics Foundation Engineering , Osaka, 2005, 3: 2045-2048.
    [27]
    TAN Y C, CHEAH S W, TAHA M R. Methodology for design of piled raft for 5-story buildings on very soft clay[C]//Foundation Analysis and Design: Innovative Methods (GSP 153), ASCE, 2006: 226-233.
    [28]
    SALES M M, SMALL J C, POULOS H G. Compensated piled rafts in clayey soils: behaviour, measurements, and predictions[J]. Canadian Geotechnical Journal,2010,47(3):327-345. doi: 10.1139/T09-106
    [29]
    BURLAND J B, KALRA J C. Queen Elizabeth II Conference Centre: Geotechnical aspects[J]. Proceedings of the Institution of Civil Engineers,1986,80(6):1479-1503. doi: 10.1680/iicep.1986.527
    [30]
    ALLIEVI L, FERRERO S, MUSSI A, et al. Structural and geotechnical design of a piled raft for a tall building founded on granular soil[C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2013: 2659-2661.
    [31]
    DE SANCTIS L, RUSSO G. Analysis and performance of piled rafts designed using innovative criteria[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(8):1118-1128. doi: 10.1061/(ASCE)1090-0241(2008)134:8(1118)
    [32]
    SMITH D M A, RANDOLPH M F. Piled raft foundations- a case history[C]//Proceedings of Conference Deep Foundation Practice, 1990: 237-245.
    [33]
    BADELOW F, POULOS H G, SMALL J C, et al. Economic foundation design for tall buildings[C]//Proceedings of the 10th International Conference on Piling and Deep Foundations, Amsterdam, 2006: 200-209.
    [34]
    SONODA R, MATSUMOTO T, KITIYODOM P, et al. Case study of a piled raft foundation constructed using a reverse construction method and its post-analysis[J]. Canadian Geotechnical Journal,2009,46(2):142-159. doi: 10.1139/T08-111
    [35]
    YAMASHITA K, KAKURAI M, YAMADA T, et al. Settlement behaviour of a five-story building on a piled raft foundation[C]//Proceedings of the 2nd International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Balkema, Rotterdam, The Netherlands, 1993: 351-356.
    [36]
    YAMASHITA K, KAKURAI M, YAMADA T. Investigation of a piled raft foundation on stiff clay[C]//Proceedings 13th International Conference Soil Mechanics Foundation Engineering,New Delhi, 1994, 2: 543-546.
    [37]
    YAMASHITA K, KAKURAI M. Settlement behaviour of the raft foundation with friction piles[C]//Proceedings 4th International Conference Piling Deep Foundations, Stresa, Italy, 1991, 1: 461-466.
    [38]
    BAKER C N, SMITH B E, NIELSEN H. Use of highly stressed piles to control settlement[C]//Proceedings 4th International Conference Piling Deep Foundations, Stresa, Italy, 1991, 1: 331-336.
    [39]
    KHOURY M C, POEPPEL A R, GALLAGHER M J. Piled rafts in New York City-Design overview and case history[C] //Indian Geotechnical Conference-2010, 2010 IGS Mumbai Chapter & IIT Bombay, 2010: 715-718.
    [40]
    SALLAM A M, JAMMAL S E. Settlement-control piles to optimize the mat foundation of a high-rise building in Downtown Orlando[C]//Art of Foundation Engineering Practice, ASCE, 2010: 605-619.
    [41]
    POULOS H G. The design of foundations for high-rise buildings[J]. Proceedings of the Institution of Civil Engineers-Civil Engineering,2010,163(6):27-32. doi: 10.1680/cien.2010.163.6.27
    [42]
    HANSBO S. Foundations on friction creep piles in soft clays[C]//1st International Conference on Case Histories in Geotechnical Engineering, Missouri University of Science and Technology, 1984: 913-922.
    [43]
    LIEW S S, GUE S S, TAN Y C. Design and instrumentation and results of a reinforcement concrete piled raft supporting 2500 ton oil storage tank on very soft alluvium deposits[C] //9th International Conference of Piling and Deep Foundations, ASCE, 2002.
    [44]
    宰金珉, 周 峰, 梅国雄, 等. 自适应调节下广义复合基础设计方法与工程实践[J]. 岩土工程学报,2008,30(1):93-99. doi: 10.3321/j.issn:1000-4548.2008.01.014
    [45]
    梅国雄, 周 峰, 吴志斌. 桩土共同作用的若干实现方法及其应用[M]. 北京: 科学出版社, 2013.
    [46]
    何颐华, 金宝森. 高层建筑箱形基础加摩擦群桩的桩土共同作用[J]. 岩土工程学报,1990,12(3):53-65. doi: 10.3321/j.issn:1000-4548.1990.03.006
    [47]
    宰金珉. 塑性支承桩——卸荷减沉桩的概念及其工程应用[J]. 岩土工程学报,2001,23(3):273-278. doi: 10.3321/j.issn:1000-4548.2001.03.003
    [48]
    TANG Y J, PEI J, ZHAO X H. Design and measurement of piled-raft foundations[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering,2014,167(5):461-475. doi: 10.1680/geng.13.00004
    [49]
    DGJ 08—11—2010 地基基础设计规范[S].
    [50]
    DB 33/1001—2003 建筑地基基础设计规范[S]. 杭州: 浙江大学出版社, 2003.
    [51]
    SKEMPTON A W, MACDONALD D H. The allowable settlements of buildings[J]. Proceedings of the Institution of Civil Engineers,1956,5(6):727-768. doi: 10.1680/ipeds.1956.12202
    [52]
    ZHANG L, NG A M Y. Limiting tolerable settlement and angular distortion for building foundations[C]//Probabilistic Applications in Geotechnical Engineering, GSP, 2006, 170: 1-11.
    [53]
    POULOS H G. Foundation design for tall buildings[J]. Geotechnical Engineering State of the Art and Practice, 2012: 786-809.
    [54]
    董建国, 赵锡宏. 高层建筑地基基础——共同作用理论与实践[M]. 上海: 同济大学出版社, 1997.
    [55]
    GB 50007—2011 建筑地基基础设计规范[S]. 北京: 中国建筑工业出版社, 2012.
    [56]
    HOOPER J A. Observations on the behaviour of a piled-raft foundation on London Clay[J]. Proceedings of the Institution of Civil Engineers,1973,55(4):855-877. doi: 10.1680/iicep.1973.4144
    [57]
    HOOPER J A. Review of behaviour of piled raft foundations[R]. Construction Industry Research and Information Association, 1979.
    [58]
    COOKE R W, SILLETT D F, BRYDEN S D W, et al. Some observations of the foundation loading and settlement of a multi-storey building on a piled raft foundation in London Clay[J]. Proceedings of the Institution of Civil Engineers,1981,70(3):433-460. doi: 10.1680/iicep.1981.1783
    [59]
    PRICE G, WARDLE I F. Queen Elizabeth II Conference Centre: monitoring of load sharing between piles and raft[J]. Proceedings of the Institution of Civil Engineers,1986,80(6):1505-1518. doi: 10.1680/iicep.1986.528
    [60]
    宰金珉. 复合桩基理论与应用[M]. 北京: 知识产权出版社, 2004.
    [61]
    徐 骥, 方鹏飞, 朱向荣. 复合桩基在杭州百货大楼二期工程中的应用[C]//第十届全国结构工程学术会议论文集(第Ⅱ卷), 2001: 594-598.
    [62]
    YAMASHITA K, YAMADA T, HAMADA J. Investigation of settlement and load sharing on piled rafts by monitoring full-scale structures[J]. Soils and Foundations,2011,51(3):513-532. doi: 10.3208/sandf.51.513
    [63]
    POULOS H G. Piled raft and compensated piled raft foundations for soft soil sites[C]//Advances in Designing and Testing Deep Foundations, ASCE, 2005: 214-235.
    [64]
    纠永志. 开挖条件下软粘土地基桩筏础非线性分析 [D]. 上海: 同济大学, 2015.
    [65]
    TERZAGHI K. Theoretical soil mechanics[M]. New York: Wiley, 1943.
    [66]
    BRINCH HANSEN J. A revised and extended formula for bearing capacity[J]. Geoteknisk Institut bulletin,1970,28:5-11.
    [67]
    杨 军. 桩基沉降控制机理的理论与离心模型试验研究[D]. 上海: 同济大学, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (91) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return