Feasibility analysis of dewatering recharge for deep foundation pit in pebble stratum
-
摘要: 为客观评价卵石地层深基坑降水回灌的可行性,分析梳理了影响可回灌性的关键因素,划分了可回灌性等级,确定了对应的评价指标水平,基于Euclid贴近度–灰色关联度分析,提出了可回灌性多因素、多水平综合评价模型。通过分析深基坑工程参数与可回灌性评价指标的关联度,可确定深基坑工程降水的可回灌性等级。以回灌工程实例对可回灌性分析的可靠性进行了验证,结果表明,基于Euclid贴近度–灰色关联度的可回灌性分析方法可为回灌设计提供参考。
-
关键词:
- 卵石地层 /
- 深基坑降水 /
- 可回灌性 /
- Euclid贴近度–灰色关联度分析
Abstract: To objectively evaluate the feasibility of dewatering recharge in deep foundation pit in pebble stratum, the key factors affecting the feasibility of recharge were analyzed, the classification of the feasibility of recharge and the corresponding evaluation index levels were determined. Based on Euclid approach degree and grey correlation degree analysis, a multi-factor and multi-level comprehensive evaluation model for recharging feasibility was proposed. By analyzing the correlation degree between the parameters of deep foundation pit engineering and the evaluation index of recharge feasibility, the feasibility grade of dewatering recharge of deep foundation pit engineering can be determined. The reliability of the recharge feasibility analysis was verified by a case study of the recharge project, and the results show that the method of the recharge feasibility analysis based on Euclid approach degree and grey correlation degree can provide references for recharge design. -
表 1 回灌场地条件的影响
回灌场地条件 可回灌性分级 强 较强 中 较弱 弱 回灌区与降水区面积比a >0.8 0.5~0.8 0.3~0.5 0.1~0.3 <0.1 表 2 回灌距离的影响
回灌区至降水区距离 可回灌性分级 强 较强 中 较弱 弱 l/m >1000 800~1000 500~800 300~500 <300 表 3 卵石层水文地质条件的影响
卵石层
水文地质条件可回灌性分级 强 较强 中 较弱 弱 渗透系数k/(m·d−1) >350 250~350 150~250 50~150 <50 可灌厚度h/m >15 10~15 5~10 3~5 <3 埋深H/m <10 10~20 20~30 30~50 >50 表 4 周边建构筑物的影响
周边建构筑物最小距离 可回灌性分级 强 较强 中 较弱 弱 s/m >1000 500~1000 300~500 100~300 <100 表 5 可回灌性评价指标
评价指标 可回灌性分级 强 较强 中 较弱 弱 回灌区与降水区面积比a >0.8 0.5~0.8 0.3~0.5 0.1~0.3 <0.1 回灌区至降水区距离l/m >1000 800~1000 500~800 300~500 <300 目标层渗透系数k/(m·d−1) >350 250~350 150~250 50~150 <50 目标层可灌厚度h/m >20 15~20 10~15 5~10 <5 目标层埋深H/m <10 10~20 20~30 30~50 >50 周边建构筑物距离s/m >1000 500~1000 300~500 100~300 <100 表 6 回灌工程参数表
回灌区与降水区面积比a 回灌区至降水区距离l/m 目标层渗透系数k/(m·d−1) 目标层可灌厚度h/m 目标层埋深H/m 周边建构筑物距离s/m 0.105 255 432 6 10 1200 表 7 可回灌性评价参数表
评价指标 比较数列$ {y}_{i}\left(k\right) $ 参考数列
$ x\left(k\right) $$ i=1 $强 $ i=2 $较强 $ i=3 $中 $ i=4 $较弱 $ i=5 $弱 回灌区与降水区面积比a >0.8 0.5~0.8 0.3~0.5 0.1~0.3 <0.1 0.105 回灌区至降水区距离l/m >1000 800~1000 500~800 300~500 <300 255 目标层渗透系数k/(m·d−1) >350 250~350 150~250 50~150 <50 432 目标层可灌厚度h/m >20 15~20 10~15 5~10 <5 6 目标层埋深H/m <10 10~20 20~30 30~50 >50 10 周边建构筑物距离s/m >1000 500~1000 300~500 100~300 <100 1200 表 8 数据处理结果
评价指标 比较数列$ {y}_{i}\left(k\right) $ 参考数列
$ x\left(k\right) $$ i=1 $强 $ i=2 $较强 $ i=3 $中 $ i=4 $较弱 $ i=5 $弱 回灌区与降水区面积比a 1 0.8125 0.5 0.25 0.125 0.1313 回灌区至降水区距离l/m 1 0.9 0.65 0.4 0.3 0.2550 目标层渗透系数k/(m·d−1) 0.8102 0.6945 0.463 0.2315 0.1157 1.0000 目标层可灌厚度h/m 1 0.875 0.625 0.375 0.25 0.3000 目标层埋深H/m −0.2 −0.3 −0.5 −0.8 −1 −0.2000 周边建构筑物距离s/m 0.8333 0.65 0.3334 0.1667 0.0833 1.0000 -
[1] 闫玉玺. 北方某市管井回灌地下水可行性试验研究[D]. 北京: 中国地质大学(北京), 2015. (YAN Y X. The experimental research on feasibility of tubewell groundwater recharge in a northern city[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese)YAN Y X. The experimental research on feasibility of tubewell groundwater recharge in a northern city[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese) [2] 王国富, 唐卓华, 李 罡, 等. 基坑工程降水回灌适宜性分级研究[J]. 施工技术,2016,45(13):41-44,49. (WANG G F, TANG Z H, LI G, et al. Suitability classification of groundwater recharge in deep foundation excavation[J]. Construction Technology,2016,45(13):41-44,49. (in Chinese)WANG G F, TANG Z H, LI G, et al. Suitability classification of groundwater recharge in deep foundation excavation[J]. Construction Technology, 2016, 45(13): 41-44,49. (in Chinese) [3] 郭 枫. 北京地铁房山线丰益桥南站~风井基坑回灌试验及数值模拟研究[D]. 北京: 中国地质大学(北京), 2019. (GUO F. Recharge test and numerical simulation study of Fengyi bridge south station to Fengjing section of Fangshan line of Beijing subway[D]. Beijing: China University of Geosciences (Beijing), 2019. (in Chinese)GUO F. Recharge test and numerical simulation study of Fengyi bridge south station to Fengjing section of Fangshan line of Beijing subway[D]. Beijing: China University of Geosciences (Beijing), 2019. (in Chinese) [4] 李凌宜, 李大宁, 赵 刚, 等. 资源性降水回灌系统设计方法初探[J]. 中国矿业,2019,28(S2):440-443. (LI L Y, LI D N, ZHAO G, et al. Preliminary study on design method of resource precipitation and recharge system[J]. China Mining Magazine,2019,28(S2):440-443. (in Chinese) doi: 10.12075/j.issn.1004-4051.2019.S2.043LI L Y, LI D N, ZHAO G, et al. Preliminary study on design method of resource precipitation and recharge system[J]. China Mining Magazine, 2019, 28(S2): 440-443. (in Chinese) doi: 10.12075/j.issn.1004-4051.2019.S2.043 [5] 欧志亮, 沈媛媛, 许 亮. 强渗透地区地铁降水回灌方案研究[J]. 城市地质,2022,17(1):50-55. (OU Z L, SHEN Y Y, XU L. Study on subway dewatering reinjection scheme in high permeability area[J]. Urban Geology,2022,17(1):50-55. (in Chinese) doi: 10.3969/j.issn.1007-1903.2022.01.008OU Z L, SHEN Y Y, XU L. Study on subway dewatering reinjection scheme in high permeability area[J]. Urban Geology, 2022, 17(1): 50-55. (in Chinese) doi: 10.3969/j.issn.1007-1903.2022.01.008 [6] 李旭光, 刘文彬, 于天飞, 等. 深基坑降水与短路径回灌的降水回灌一体化设计方法: 116186869A[P]. 2023-05-30. (LI X G, LIU W B, YU T F, et al. Dewatering and recharging integrated design method for deep foundation pit dewatering and short-path recharging: 116186869A[P]. 2023-05-30. (in Chinese)LI X G, LIU W B, YU T F, et al. Dewatering and recharging integrated design method for deep foundation pit dewatering and short-path recharging: 116186869A[P]. 2023-05-30. (in Chinese) [7] 李大宁, 赵 刚, 韩冬冰. 基于数值分析的降水与回灌相互影响分析[J]. 山西建筑,2020,46(1):88-89. (LI D N, ZHAO G, HAN D B. Analysis of Interaction between precipitation and recharge based on numerical analysis[J]. Shanxi Architecture,2020,46(1):88-89. (in Chinese)LI D N, ZHAO G, HAN D B. Analysis of Interaction between precipitation and recharge based on numerical analysis[J]. Shanxi Architecture, 2020, 46(1): 88-89. (in Chinese) [8] 刘思峰, 蔡 华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践,2013,33(8):2041-2046. (LIU S F, CAI H, YANG Y J, et al. Advance in grey incidence analysis modelling[J]. Systems Engineering Theory & Practice,2013,33(8):2041-2046. (in Chinese) doi: 10.3969/j.issn.1000-6788.2013.08.018LIU S F, CAI H, YANG Y J, et al. Advance in grey incidence analysis modelling[J]. Systems Engineering Theory & Practice, 2013, 33(8): 2041-2046. (in Chinese) doi: 10.3969/j.issn.1000-6788.2013.08.018 [9] 马菊红. 新灰色关联分析法在评价经济效益中的应用研究[J]. 情报杂志, 2005, 24(3): 98-99. (MA J H. Research on the application of new grey relational analysis method in evaluating economic benefits[J]. Journal of Intelligence, 2005, 24(3): 98-99. (in Chinese)MA J H. Research on the application of new grey relational analysis method in evaluating economic benefits[J]. Journal of Intelligence, 2005, 24(3): 98-99. (in Chinese) [10] 伍学雷. 基于改进灰色关联分析模型的围岩稳定性综合评价[J]. 河南科技, 2014, 33(7): 23-24. (WU X L. Comprehensive evaluation of surrounding rock stability based on improved grey relational analysis model[J]. Henan Science and Technology, 2014, 33(7): 23-24. (in Chinese)WU X L. Comprehensive evaluation of surrounding rock stability based on improved grey relational analysis model[J]. Henan Science and Technology, 2014, 33(7): 23-24. (in Chinese) [11] 王嵩峰, 周培疆. Euclid贴近度–灰色关联模型在环境评价中的应用[J]. 环境科学与技术,2004,27(S1):25-27. (WANG S F, ZHOU P J. Study on complex model of Euclid approach degree-grey relational analysis: its application in environmental quality assessment[J]. Environmental Science & Technology,2004,27(S1):25-27. (in Chinese) doi: 10.3969/j.issn.1003-6504.2004.z1.010WANG S F, ZHOU P J. Study on complex model of Euclid approach degree-grey relational analysis: its application in environmental quality assessment[J]. Environmental Science & Technology, 2004, 27(S1): 25-27. (in Chinese) doi: 10.3969/j.issn.1003-6504.2004.z1.010 -
计量
- 文章访问数: 5
- HTML全文浏览量: 3
- PDF下载量: 1
- 被引次数: 0