留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

最近三十年岩土原位测试技术新进展

王云南 张龙 郑建国 刘争宏 于永堂 门青波

王云南, 张龙, 郑建国, 刘争宏, 于永堂, 门青波. 最近三十年岩土原位测试技术新进展[J]. 岩土工程技术, 2021, 35(4): 269-274. doi: 10.3969/j.issn.1007-2993.2021.04.012
引用本文: 王云南, 张龙, 郑建国, 刘争宏, 于永堂, 门青波. 最近三十年岩土原位测试技术新进展[J]. 岩土工程技术, 2021, 35(4): 269-274. doi: 10.3969/j.issn.1007-2993.2021.04.012
Wang Yunnan, Zhang Long, Zheng Jianguo, Liu Zhenghong, Yu Yongtang, Meng Qingbo. Recent Advances in Geotechnical In-situ Testing Techniques in the Last 30 Years[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2021, 35(4): 269-274. doi: 10.3969/j.issn.1007-2993.2021.04.012
Citation: Wang Yunnan, Zhang Long, Zheng Jianguo, Liu Zhenghong, Yu Yongtang, Meng Qingbo. Recent Advances in Geotechnical In-situ Testing Techniques in the Last 30 Years[J]. GEOTECHNICAL ENGINEERING TECHNIQUE, 2021, 35(4): 269-274. doi: 10.3969/j.issn.1007-2993.2021.04.012

最近三十年岩土原位测试技术新进展

doi: 10.3969/j.issn.1007-2993.2021.04.012
基金项目: 岩土工程勘察信息化成套技术研发;陕西省岩土工程(黄土工程特性研究)“三秦学者岗位”
详细信息
    作者简介:

    王云南,男,1991年生,汉族,吉林人,硕士研究生,工程师,主要从事岩土工程相关研究工作。E-mail:605725462@qq.com

  • 中图分类号: TU 197

Recent Advances in Geotechnical In-situ Testing Techniques in the Last 30 Years

  • 摘要: 目前大部分岩土工程勘察企业使用的是传统原位测试手段。为了梳理、归纳岩土原位测试技术的最新进展,从变形特性试验、抗剪强度试验、渗透试验和触探试验等四个方面,将20世纪90年代至今岩土原位测试技术与设备的最新研究进展进行系统性综述。当前的原位测试技术具备自动化、信息化、多功能化和技术升级等四大特征,但仍然存在测试成本高、理论基础薄弱、试验自身局限和进展缓慢等问题。根据实际问题从加强理论基础、信息化和多功能设备的研发、拓展研究区域等方面提出展望。

     

  • 表  1  CPT/CPTU测试技术列表

    序号产品名称产品功能及特点研发单位及时间
    1 电阻率孔压静力触探(RCPTU) 可测锥尖阻力、侧壁摩擦阻力、孔隙水压力、
    水电阻率、土电阻率、温度和倾斜
    加拿大英属哥伦比亚大学,1990[35]
    2 放射性传感器 测量重度和含水量 荷兰Ddlft土力学实验室,1985
    3 静探旁压仪 测量应力、应变,确定模量 荷兰Fugro公司,1986
    4 地震波孔压静力触探(SCPTU) 可提供土的应力破坏状态、土的低应变刚度
    和土体的渗透性参数
    Lunne T, Robertson P K, Powell J M,1997[36]
    5 可视化静力触探技术(VisCPT) 连续获取土层的数字化数据并转换为图像 美国密歇根大学,1996[37]
    6 全流触探测试技术(FFP) 近海场地勘察,精确获取超软土不排水抗剪强度 Stewart和Randolph,1991[38]
    7 (动态)伽马射线传感器(GCPT) γ射线强度,应用于环境岩土工程 瑞典ConeTech公司,1998
    8 海底自由落体贯入式测试技术(FFCPT) 较准确获得海底浅层土体的原位特性参数
    和土体扰动后的参数
    9 多摩擦筒CPT技术 对不同竖向和水平应力对侧壁摩阻力的影响研究 Frost和Matinez,2013[39]
    10 探测磁场强度CPT技术 对城市地下障碍物埋藏位置和区域进行判别
    11 大直径触探头 测量砾石土层中的锥尖阻力
    12 旋转CPT技术 地下水埋藏较深地区的勘探,深度可达60~70 m 铁三院,2010[40-41]
    13 荧光探头LIF技术 分析地下水的烃污染状况 Hirshfield[42]和Chudyk[43],1984
    14 薄膜界面探头MIP技术 探测地表下有毒性挥发有机污染物的位置和浓度 Geoprobe公司
    下载: 导出CSV
  • [1] 吴丽萍,吴银柱,杨国春,等. 深层平板载荷试验装置的研究[J]. 工程勘察,2001,(6):4-7.
    [2] 吴银柱,杨国春,王文臣. 深层平板载荷试验测试装置的研制[J]. 岩土工程学报,2002,(6):756-759. doi: 10.3321/j.issn:1000-4548.2002.06.018
    [3] 李 伟. 浅析一种新型平板载荷试验方法及装置[J]. 智能城市,2018,4(24):154-155.
    [4] KIM T H,KANG G C,KWANG W K . Developing a small size screw plate load test[J]. Marine Georesources and Geotechnology,2014,32(3):222-238.
    [5] 徐光黎, 张晓伦, 王春艳, 等. 新型自钻式剪切旁压仪及其应用[M]. 武汉: 中国地质大学出版社, 2009.
    [6] 程伟峰, 蔡永生. 旁压仪及旁压试验的发展历程[C]//2016年全国工程勘察学术大会论文集(下册), 2016.
    [7] 刘小敏, 侯伟生. 岩土工程测试新技术新方法[C]. 全国岩土工程师论坛文集, 2018.
    [8] MARTIN G K,MAYNE P W. Seismic flat dilatometer tests in connecticut valley varved clay[J]. Astm Geotech. Testing J,1997,20(3):357-361.
    [9] 唐世栋,傅 纵. 扁铲侧胀试验求解土的不排水抗剪强度[J]. 工程勘察,2004,(5):14-17.
    [10] 唐世栋,陶利勇,肖 勇. 扁铲侧胀消散试验求解固结系数的研究[J]. 勘察科学技术,2011,(3):1-5. doi: 10.3969/j.issn.1001-3946.2011.03.001
    [11] 杨智国. 扁铲侧胀试验在黄土地基评价中的应用[J]. 西安科技大学学报,2012,32(3):359-363. doi: 10.3969/j.issn.1672-9315.2012.03.016
    [12] 田根宏. 西安地铁二号线黄土工程特性研究[D]. 西安: 西安理工大学, 2008.
    [13] 董 云,柴贺军,杨慧丽. 土石混填路基原位直剪与室内大型直剪试验比较[J]. 岩土工程学报,2005,27(2):235-238. doi: 10.3321/j.issn:1000-4548.2005.02.021
    [14] 阂 弘, 魏进兵, 邓建辉, 等. 应变控制式大型室内及现场两用直剪装置: 中国ZL200420057748. 7[P]. 2006. 3.
    [15] 张 嘎,张建民. 大型土与结构接触面循环加载剪切仪的研制及应用[J]. 岩土工程学报,2003,25(2):149-153. doi: 10.3321/j.issn:1000-4548.2003.02.005
    [16] 徐 波. 便携式原位直剪仪的研究与开发[D]. 宜昌: 三峡大学, 2007.
    [17] BIERRUM L. Embankments on soft ground. In: proceedings performance of earth and earth-supported structures[J]. Vol 2. Asce, Lafayette, Ind., 1972: 1–54.
    [18] LEROUEIL S. Natural slopes and cuts: movement and failure mechanisms[C]. 39th Rankine Lecture. Geotechnique, 2001, 51(3): 197–243.
    [19] MAYNE P W, CHRISTOPHER B R, DEJONG J. Manual on subsurface investigations[C]. Nationalhighway Institute Publication No 6. Fhwa Nhi-01-031 Federal Highway Administration, Washington, Dc, 2001.
    [20] BOUASSIDA M, DALEL A D. On the determination of undrained shear strength from vane test[C]. Geotechnical And Geophysical Site Characterisation Isc'5, 2016.
    [21] BOUASSIDA M, BOUSSETTA S. On the determination of vane shear strength of soft soils[C]. In: Proceedings Of The 12th African Regional Conference On Soil Mechanics And Geotechnical Engineering, Durban (South Africa), 1999: 285–291.
    [22] HANDY R L,FOX N S. A soil borehole direct shear test device[J]. Highway Research News,1967,(27):42-51.
    [23] THEODORE D B. Automation and further development of the borehole shear test[D]. Ames: Iowa State University, 2012.
    [24] ASHLOCK J C, BECHTUM T D. Automated borehole shear soil testing device: final report [R]. 2011.
    [25] HANDY R L, PITT J M, ENGLE L E, et al. Rock borehole shear test[C]. Proceeding of the 17th U.S. Symposium on Rock Mechanics, 1976, 4B6: 1-11.
    [26] 贾志欣,汪小刚,赵宇飞,等. 岩石钻孔原位测试技术的应用与改进[J]. 岩石力学与工程学报,2013,32(6):1264-1269. doi: 10.3969/j.issn.1000-6915.2013.06.021
    [27] 曾鹏毅. 钻孔剪切测试设备研发及试验应用[D]. 成都: 西南交通大学, 2018.
    [28] 于永堂,郑建国,刘争宏,等. 钻孔剪切试验及其在黄土中的应用[J]. 岩土力学,2016,37(12):3635-3641, 3649.
    [29] 于永堂,高 远. 土体抗剪强度参数的钻孔剪切试验方法初探[J]. 岩土工程技术,2015,29(4):169-172, 208. doi: 10.3969/j.issn.1007-2993.2015.04.002
    [30] 陈云敏,林 政,SCHELLINGERHOUT A J G. IFCO BAT系统测试地基孔压及原位渗透系数理论及其应用[J]. 岩石力学与工程学报,2005,(24):4440-4448. doi: 10.3321/j.issn:1000-6915.2005.24.007
    [31] ORSTENSSON B A. A New System For Ground Water Monitoring[J]. Ground Water Monitoring Review,1984,26(3):131-138.
    [32] 郑建国. 岩土原位测试技术的现状与发展[J]. 地基处理,1993,4(1):36-56.
    [33] 沈小克, 蔡正银, 蔡国军. 工程勘察与原位测试技术进展[C]// 中国土木工程学会土力学及岩土工程分会. 中国土木工程学会第十二届全国土力学及岩土工程学术大会论文摘要集. 北京: 中国土木工程学会土力学及岩土工程分会.中国土木工程学会, 2015: 21.
    [34] 刘松玉, 蔡国军, 童立元. 现代多功能CPTU技术理论与工程应用[M]. 北京: 科学出版社, 2013.
    [35] CAMPANELLA R G,WEEMEES I. Development and use of an electrical resistivity cone for groundwater contamination studies[J]. Canadian Geotechnical Journal,1990,27(5):557-567.
    [36] LUNNE T, ROBERTSON P K, POWELL J M. Cone penetration testing in geotechnical practice[M]. Blackie Academic and Professional, London, UK, 1997.
    [37] HRYCIW R,RASCHKE S. Development of computer vision technique for in situ soil characterization[J]. Transportation Research Record: Journal of the Transportation Research Board,1996,(1526):86-97.
    [38] STEWART D P, RANDOLPH M F. A new site investigation tool for the centrifuge[C]//Proc. Centrifuge, 91, 1991: 531-538.
    [39] FROST J D, MATINZE A. Multi-sleve axial-torsional-piezo friction penetration system for subsurface charaterization[C]//proceedings of the 18th international conference on soil mechanics and geotechnical engineering: Challenges and innovations in geotechnics, Pairs 2013, 2013 (1): 527-530.
    [40] 陈新军,杨怀玉,赵凤林. 一种深层静力触探方法[J]. 铁道工程学报,2010,(2):289-292.
    [41] 赵凤林,陈新军. 一种基于旋转触探的参数采集及处理微机系统[J]. 铁道工程学报,2011,28(10):111-114. doi: 10.3969/j.issn.1006-2106.2011.10.021
    [42] HIRSHFIELD T, DEATON T, MILANOYICH F, et al. The feasibility of using fiber optics for monitoring groundwater contaminants [R]. Project Summary, Environmental Monitoring Systems Laboratory, USEPA, 1984.
    [43] CHUDYK W A, CARRBBA M M, KENNY J E. Remote detection of gorundwater contaminants using far-ultraviolet laser-induced fluorescence[J]. Analytical Chemistry, 1985, 57(7): 1237-1242.
    [44] VALIQUETTE M,ROBINSON B,Borden R H. Energy efficiency and rod length effect in standard penetration test hammers[J]. Transportation Research Record,2010,(2186):47-56.
    [45] HETTIARACHCHI H,BROWN T. Use of SPT blow counts to estimate shear strength properties of soils: Energy balance approach[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(6):830-834.
    [46] LEE C, LEE J,AN S, et al. Effect of secondary impacts on SPT rod energy and sampler penetration[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(3):522-526. doi: 10.1061/(ASCE)GT.1943-5606.0000236
    [47] 刘裕华. 基于波动理论改进标准贯入试验的研究[D]. 南京: 南京大学, 2012.
    [48] 杨文卫,岳中琦. 世界各地标准贯入试验比较和共同问题[J]. 工程勘察,2008,(1):5-15, 52.
    [49] DANIEL L,PIERRE B,CLAUDE B. Modulus estimation of surrounding soils of underground structures in service[J]. Geotechnical Testing Journal,2015,38(4):452-460.
    [50] 周树华,魏兰英,伍法权,等. 运用轻便动力触探仪研究黄土的岩土工程特性[J]. 岩土工程学报,1999,(6):3-5.
    [51] 王军辉,韩煊,王 鑫,等. 多向圆锥动力触探和标准贯入技术研究[J]. 施工技术,2015,44(S2):89-91.
  • 加载中
表(1)
计量
  • 文章访问数:  767
  • HTML全文浏览量:  155
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回